Existence, Uniqueness, and Regularity Results for Elliptic Equations with Drift Terms in Critical Weak Spaces
نویسندگان
چکیده
منابع مشابه
Non-existence and uniqueness results for supercritical semilinear elliptic equations
Non-existence and uniqueness results are proved for several local and non-local supercritical bifurcation problems involving a semilinear elliptic equation depending on a parameter. The domain is star-shaped and such that a Poincaré inequality holds but no other symmetry assumption is required. Uniqueness holds when the bifurcation parameter is in a certain range. Our approach can be seen, in s...
متن کاملExistence and Uniqueness for Integro-Differential Equations with Dominating Drift Terms
In this paper we are interested on the well-posedness of Dirichlet problems associated to integro-differential elliptic operators of order α < 1 in a bounded smooth domain Ω . The main difficulty arises because of losses of the boundary condition for sub and supersolutions due to the lower diffusive effect of the elliptic operator compared with the drift term. We consider the notion of viscosit...
متن کاملExistence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملCompactness and Existence Results for Degenerate Critical Elliptic Equations
This paper is devoted to the study of degenerate critical elliptic equations of Caffarelli-Kohn-Nirenberg type. By means of blow-up analysis techniques, we prove an a-priori estimate in a weighted space of continuous functions. From this compactness result, the existence of a solution to our problem is proved by exploiting the homotopy invariance of the Leray-Schauder degree.
متن کاملSome New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations
This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Mathematical Analysis
سال: 2020
ISSN: 0036-1410,1095-7154
DOI: 10.1137/19m1282969